Neural-based color image segmentation and classification using self-organizing maps
نویسنده
چکیده
This paper presents a method for color image segmentation which uses classification to group pixels into regions. The chromaticity is used as data source for the method because it is normalized and considers only hue and saturation, excluding the luminance component. The classification is carried out by means of a self-organizing map (SOM), which is employed to obtain the main chromaticities present in the image. Then, each pixel is classified according to the identified classes. The number of classes is a priori unknown and the artificial neural network that implements the SOM is used to determine the main classes. The detection of the classes in the SOM is done by using a K-means segmentation. The obtained results substantiate the feasibility of the method, whose performance is compared, for evaluation, to human-assisted segmentation. A comparison of the method with a segmentation based on the k-nearest-neighbor classification is also presented.
منابع مشابه
کاهش رنگ تصاویر با شبکههای عصبی خودسامانده چندمرحلهای و ویژگیهای افزونه
Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...
متن کاملComparative Study of Image Segmentation using Variants of Self Organizing Maps (SOM)
Image segmentation is a very crucial step in the field of image processing which helps us to simplify the representation of the image, to make it easier to analyze. This paper deals with the comparison of image segmentation techniques based on unsupervised artificial neural network technique, known as Kohonen’s Self Organizing Maps (SOM). We first present image segmentation using Kohonen’s Self...
متن کاملGreen Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملAn Integrated Approach to Image Sequence Segmentation
Semantic object segmentation is an important step for object based coding, content based access and manipulations. We propose a segmentation scheme for image sequences which provides initial region information for the semantic object representation of those applications. Our objective is to develop a segmentation method which has hardware friendly architecture, and incorporates static and dynam...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کامل